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Dekking and Meester defined six phases for a subclass of random Cantor sets 
consisting of those generated by Bernoulli random substitutions. They proved 
that the random Sierpinski carpet passed through all these phases as p tended 
from 0 to 1, but they were not able to prove the existence of phase V in the 
Mandelbrot percolation process. In this paper, we accomplish the proof by 
improving their methods. 
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1. ORIGIN OF THE PROBLEM 

Definit ion 1.1. 
t ion if: 

1.1. Random Substi tut ions and Random Cantor Sets 

We call a: { 0, l} ~ {0, 1} N • ~ a r a n d o m  substi tu- 

(i) We have 

(ii) 
there are positive numbers  Pl ..... p,. with P 1 +  "'" + P r  = 1  
P [ a ( 1 ) =  U;] = P i ,  for 1 <~i<~r. 

a( 1 ) ~ { Ul ..... U,},  UI ,..., U,. are N x N 0-1-va lued  matrices,  and  
such that  
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I teration is defined as follows: a"+~(1)  is obtained by replacing all 
O's in a"(1) by t r ( 0 )=0 ,  and all l 's  by independent r andom matrices 
distributed as a(1). 

I terating tr n times leads to an N" x N"  r andom matrix /4I" = tr '(1). Let 
t l  _ n n n Ikl--17" k • ITt, where I k = [ ( k - 1 )  N - " ,  k N - ' ] ,  for 1 ~<k, l~< N ' .  We call 

such a set I~. t a level-n square. We now consider the sets 

A.-- [.J {I~,: W)~,= 1} 
k , I  

The A,  decrease to a compact  subset A of the unit square, which is called 
a r andom Cantor  set. 

1.2. Bernoulli Substi tut ion and Mandelbrot  Percolation 
Process 

Definition 1.2. We call a r andom substitution a a Bernoulli 
( random)  substitution with paramete r  p if there is a set J of  indices (k, 1) 
such that  a ( 1 ) k / = 0  if (k, l ) ~ J  and P [ a ( 1 ) k / =  1] = 1--  P [ t r ( 1 ) k l = 0 ]  = p  
for (k, l ) s  J, independent of  all other entries of  a(1). 

E x a m p l e  1.3. Given N = 3, J =  { (k, l) : k :~ 2 or l =~ 2}, the limiting 
set A is called a random Sierpinski carpet. 

E x a m p l e  1.4. Given N >  1 and J includes the full set of  indices, A 
is called a Mandelbrot percolation process. 

For  a r andom Cantor  set A, A percolates means that  A contains a 
connected component  which has a nonempty  intersection with the left and 
right side, of the unit square. 

1.3. Morphology of Random Cantor Sets 

Let A be a r andom Cantor  set in the unit square generated by a 
Bernoulli substitution, nA denotes the projection of A onto the x axis. 
2 denotes the Lebesgue measure,  and d im( . )  denotes the Hausdorf f  
dimension of a set. The six states of  A are defined as follows: 

I. A = ~ ,  a lmost  surely. 

II. P [ A  ~ : ~ ]  > 0 ,  but dim(teA) =d im(A) .  

III .  dim(~zA) < dim(A) a.s. given A :~ ~ ,  but 2(z cA)=  0, a.s. 

IV. 0 < 2 ( n A ) < l  a.s. given A ~ .  

V. P [2 (nA)  = 1 ] > 0, but A does not percolate a.s. 

VI. A percolates with positive probability.  
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The following result tells us when a r andom Cantor  set is in one of the 
first three phases. Let rn I be the average number  of  ones in the l th column 
of a( 1 ), i.e., 

r N 

mr= E Pi E Ui(k,l) 
i = 1  k = l  

Theorem 1.5. Let A be a r andom Cantor  set. Then: 

1. A = ~ ,  a.s., iff Z ~ = l m / ~ < l  [unless a(1) contains exactly one 1 
a . s . ] .  

2. d im(nA)=dim(A)  i f fZ~= l m/ log m/ ~< 0. 

3. 2 ( h A ) = 0  i f f ~ C = l l o g m / ~ < 0 .  

Proof. See Dekking and Meester, I~) Theorem 2.1. 1 

In the following, we will only consider the Mandelbrot  percolation 
process, i.e., we will always assume that  N = 3, J includes all the indices. 

E x a m p l e  1.6. For  Mandelbrot  percolation, we have m~ =m2= 
/'/13 = 3p .  Hence A = ~2~ a.s. for 0 ~< p <~ 1/9, A is in phase II  for 1/9 < p -%< 1/3, 
there is no phase III :  at  p = 1/3, A passes from II  to IV. 

1.4. Mult ivalued and Random Substitut ions 

Let ~(1)  be a nonempty  set of  words of  length N, such that  
0 . - . 0 r  Let ~ (0 )  be the complement  of  ~ (1 )  in {0, 1} N. For  words 
w and w', ww' denotes the concatenat ion of w and w'. Fur thermore ,  we 
define the following sets: 

r vw) = { v'w' l v' e ~(v), w' e r 

~"(1) :{r162  n>~2 

The set ~"(0)  is defined analogously. 

L e m m a  1.7. r  

Proof. See. Dekking and Meester, tt~ Lemma  3.1. II 

Proposition 1.8. Let ap be a Bernoulli r andom substitution and 
define 

no(p) = 1 

n , (p )  = P [ap(1 )  e ~" (1 ) ] ,  n~>l 
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Then we have, for all n >/0, 

n, ,+l(P) = n l ( p n , , ( p ) )  

Proof. See Dekking and Meester,  t~) Proposi t ion 3.3. II 

The set q~(1) is said to be increasing if the following is true: if w = 
w I - . .wNer  and wi=O for some i, then W'=Wt.'.Wi_11Wi+I...WNe 
4(1) .  I f  r is increasing, it follows from Grimmet t ,  t2) Section2.5, that  
r~(p)  is an increasing function in p. We define an iteration function Gp as 
follows: 

Gp(x) = n l ( p x ) ,  x, p e  [0, 1] 

It follows from Proposi t ion 1.8 that  lrn+l(p)=Gp(zrn(p)) and we obtain 
rt,,(p) = G~(1), n >/1. If  r is increasing, Gp(.) is increasing and hence 
n~(p)  = lim . . . .  rr,,(p) is equal to the largest fixed point  of  Gp. We define 

pc (~ )  = inf{ p I n'~(p) > 0} 

L e m m a  1.9. Consider a Bernoulli r andom substitution and let 
~b(1) be an increasing set. Suppose that (a/Op) ztl(p)Ip=t<l. Then 
pc (~ )  < 1 and pc(~)  is equal to the smallest p for which the following 
system has a solution: 

Gp(x) =x 

~.. Gp(x) = 1 
(*) 

Proof. See Dekking and Meester, "~ Lemma  3.4. II 

L e m m a  1.10.  Let 

Pw.v = inf{ p: P[2(zrA) = 1 ] > 0} 

Then Piv, v ~< 0.7307. 

Proof. Take 

r = {(u,3: 
3 

l~<k, l~<3,  and y '  Ukl>0,1~<l~<3 
k = l  

Then we have Gp(x)= [1 - ( 1  - p x ) 3 ]  3. 
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Using (*) of Lemma 1.9, it follows that 

x ~ 0.791701 

p = p~(q~) ,~ 0.730661 

2. I M P R O V I N G  THE E S T I M A T I O N  OF THE 
UPPER BOUND OF P,v.v 

We call a 0-1-valued word u=(uo.), l<~i<~N, ]<~j<~M, a fully 
projected matrix if Z,.:v= l u~j > 0 for all j. In Lemma 1.10, ~(  1 ) corresponds 
the set of 3 • 3 fully projected matrices. The defect of this method is that 
r  (m > 1) is much smaller than the set of 3"'• 3 m fully projected 
matrices. In this section, we will improve the estimation of the upper bound 
o fpw,  v by constructing the iterations of 3rex 3"  fully projected matrices. 

Definit ion 2.1. Form~>0, k:>l, 

�9 3 m 
~1~,,, ,k . =  T i n .  k 

~, , (1)  := ~,,.~ 

From the definitions, ~,,,.k denotes the set of 3 " x  3"k  fully projected 
matrices, and ~ ( 1 )  is the same as the �9 in Lemma 1.10. Let e r a ( 0 ) =  
{0, 1}3~' \~, , (I) .  Iteration is the same as that in Section 1.4. We have, 
according to Lemma 1.7, 

~ , ( 0  ) = { 0, 1 } 3"'\@',',( 1 ), V m ,  n > ~ l  

Proposition 2.2.  For  all m, n ~> 1, let 

(m} mn n •,, ( p ) = P [ a p  ( 1 ) e ~ , , ( l ) ]  

Then 

, ~ ' ~  t ,,~ = " " C ~ i l p  .( l _ p ) 3 , 1 - , 2  �9 " , , +  l , r ,  C~lp,,( 1 _ _ p ) 3 - i ,  i ,  i'~ " " 

i 1=1  L i  1 

X " ' "  C 3 i , , , _ 2 p  (1 _p)3i.,-2 
L L l ' ~  i~ 1 

x ~" r.i,, t , , ~ ' ~ ' ~ t , , ~ i "  (1 - - p n t , ' , " ) ( p ) )  3 i ' - ' - i "  . . . .  

i,,~ = 1 

where io = I. 

3j 3] 

822/80/5-6-3~ 



1 4 1 0  W u  and Liu 

Proof. For  m = 1, it follows from Proposi t ion 1.8. 
For  m > 1, it is not difficult to see that 

3 , . . [-  3 / I  . . 

i, 1 [ . ifl P -t __p)3'1- '2 

[ 3i,,,_.. ,',,-, ,',,,-, . , ' , , , - ,  

x .. .  , ,~=~_. C~i.,_.p ( l - p )  ~"'- '-- 

L i m = l 

On the other hand, 

~ ( m )  / ~ ~ m - -  ;nn (~,..~ ( 1 1 )  " ' , ,+I 'P)  ~ P(O'p '(|)~-V)P(O'p (Op(V) )e  ,,+I 
e e ~ m - I ( l )  

t i m  To calculate P(ap (ap(v))e~',',, +l(1)), we introduce some notations: for 
words V,W~qSk(1), k>~l ,  lwl=Y~w:, b<..w means v~<~wl for all i; 
v e ~k+ ~(1) is obtained by replacing all O's in v by (000000000), and all l 's 
by ( l l l l l l l l l ) .  

Note  that ~(v)~<~;  for a fixed word w~q~,,(1), if w ~ 6, then 
a~"(~,(v))~q~',',,(w) for all n. But ~e (~,(v))  can he written as 

i?q l l  I~ l t t  t ? t l l  o'p ( o e ( v ) ) = a  r (ul) '"~,  (U,v), N = 3  z" 

and ut ..... uN are independent. Using the same method as in the proof  of  
Proposi t ion 1.8, we have 

p(~,:,,(ap(V))er ~ (p~(~,n(p))f,,,I (1 -p~ t l , " ) (p ) )  91"1-1"1 
w ~ ~,,(  I ) 

In the similar way, we have 

n~"'(p)= E P(a,;'-'(1)=v) E pt'"'(l-p)"J"~-~'"~ 
v ~ q J m - I ( l )  w ~  ~ m ( l )  

(m) {n~ Compar ing  the representation formulas of  n]")(p) and n,,+ 1,~-,, we accom- 
plish the proof. 

It follows from Proposit ion 2.2 that for fixed m, if nT or p J., then 
Tglm) ,, (P)L Hence the limit lira . . . . .  n~,,"n(p) exists. The problem is whether or 
not this limit is positive. Let 

p,,,=inf{p: nl~,)(p) = lira n,,v'n(p) > 0 }  

Then we have the following result. 
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L e m m a  2.3.  For  all m >/1, Piv.v ~< P,.. 

Proof. Let A be a Mandelbrot  percolation process with A = 0 A,,. 
Then 

Pw.v = inf{p: P [2 (nA)  = 1 ] > 0} 

and 

2 ( n A ) = l . = > 2 ( n A , , ) = l ,  Vn>~l.ce-ap(1)~q~,,(1), Vn>~l 

Hence 

P [2 (nA)  = 1 ] = lim n'[(p) 
/ l ~  o o  

F o r  al l  m ~> 1, i f  p > Pm, t h e n  

0 <  lim (") - n,, ( p ) -  lim P[ap"(1)e@, , , (1 ) ]  
n ~ OE, n ~ cc ,  

~< lim P[a~"(1)sq~,, , , ,(1)] = lim n]" ' ) (p)  

= P [ ; t ( • A )  = 1 ] 

Hence p >  Piv.v- II 

Although we can define an iterate function Gp..,(x) to find p., as in 
Lemma 1.9, we estimate p,,, by testing different values because of the 
lengthy expression of  (O/Ox)Gp.,,,(x): for fixed Po, if n~,(")t"~eoj~>O, then 

( m ) t  n P,,, ~< Po; if no:. w, oJ = 0, then p,, > Po. N o w  have the estimations o fp , ,  for 
m ~< 7 as in Table I. 

L e m m a  2.4.  pw, v~<0.6317. 

T a b l e  I 

m p n~:'~(p) 

1 0.7307 0.797379 
2 0.7056 0.716061 
3 0.6869 0.626459 
4 0.6712 0.530710 
5 0.6569 0.432689 
6 0.6437 0.348253 
7 0.6317 0.270622 
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3. I M P R O V I N G  THE E S T I M A T I O N  OF THE 
LOWER B O U N D  OF Pv.v, 

In this section, we will estimate the lower bound ofpv.v] by using the 
methods of ordinary branching processes. Because the construction of the 
process is somewhat complex, let us start from a simple estimation. 
Lemma 3.1 was proved in Chayes el al., (3) Section (b); we prove it again in 
order to introduce some useful notations. 

In the following, a level-n square I"~.l is" said to be open if a~;( 1 )(k, 1) = 1; 
otherwise it is closed. 

L e m m a  3.1. Pv.vI> 1/V/j- 

Proof. Consider the segment S =  { 1/3} x [0, 1] in Fig. 1. 
We say a level-n segment (common side which is in S of two level-n 

squares) passable if the two consecutive level-n squares are both open. 
Let Z,, be the number of passable level-n segments in S. Then 

EZ1 = 3p 2 

Hence for p<<.l/x/~, the branching process {Z,,},,~> I dies out w i t h  
probablity 1. II 

Lemma 3.2. Pv.vi>0-5917. 

Proof. Continue to use the notations in Lemma 3.1. Let S~ denote 
the common side of I:1 and I114. If 1111 and 114 are both open, we construct 
a branching process as follows. 

] i l I 

1 1 
I .  I x, 

S 

Fig. 1 
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minim 

1 1 Sl  114 I .  
Fig. 2 

In Fig. 2, we say a level-n segment (n >/2) in $1 passable if there is a 
connected component  in the two consecutive level-(n - I ) squares I t -  ] and 
I~'- ~ generated by level-n open squares that crosses it and connects into left 
and right shadows. We can see in the figure that a level-n segment's 
passability is the same as in Lemma 3.1 when it is not  in the middle of a 
level-(n -- 1 ) segment. 

Let Z,, denote the number  of  level-(n + 1) passable segments in S~. 
Then 

EZ~ = 2p 2 + [p(1 - (1 -- p)2) + p(1 - p)2 p(1 - (1 -- p)3)] 2 

I f p  < 0.591721, then EZI < 1. And for the common  side $2 of  112 and I~5, 
$3 of  I~]3 and I :6 ,  we construct branching processes by the same method. 
Then the three processes are i.i.d. Hence they will all die out when 
p ~< 0.5917, i.e., the segment S cannot  be crossed with probability 1. II 

Lemma 3.3. Pv, w >0.6346. 

Proof. We divide S into three branching processes as in Lemma 3.2. 
For  Sj ,  see Fig. 3. We say a level-(2n + 1) segment in $1 is passable if there 
is a connected component  in the two consecutive level-(2n-1) squares 
12,,-1 and r2,,-,~ generated by level-(2n+ 1) open squares that crosses it k " /  
and connects into left and right shadows. Let Z,, denote the number  of  
level-(2n + 1) passable segments in $1. A computer  calculation shows that 
if 

p = 0.6346 
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| / / m i n i  

S' Ih 
Fig. 3 

then 

E Z  1 = 0 .999658 

Hence Pv.vl >0.6346- | 

Proposition 3.4. The phase V in Mandelbrot percolation exists. 

Proof. From Lemmas 2.4 and 3.3 we have 

Pw, v < P v ,  vi | 
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