The Existence of Phase V in the Mandelbrot Percolation Process

Jiang Wu¹ and Xiufang Liu¹

Received July 14, 1994; final November 30, 1994

Dekking and Meester defined six phases for a subclass of random Cantor sets consisting of those generated by Bernoulli random substitutions. They proved that the random Sierpinski carpet passed through all these phases as p tended from 0 to 1, but they were not able to prove the existence of phase V in the Mandelbrot percolation process. In this paper, we accomplish the proof by improving their methods.

KEY WORDS: Mandelbrot percolation; random substitution.

1. ORIGIN OF THE PROBLEM

1.1. Random Substitutions and Random Cantor Sets

Definition 1.1. We call $\sigma: \{0, 1\} \rightarrow \{0, 1\}^{N \times N}$ a random substitution if:

(i) We have

$$\sigma(0) = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

(ii) $\sigma(1) \in \{U_1, ..., U_r\}, U_1, ..., U_r \text{ are } N \times N \text{ } 0\text{-1-valued matrices, and}$ there are positive numbers $p_1, ..., p_r$ with $p_1 + \cdots + p_r = 1$ such that $\mathbb{P}[\sigma(1) = U_i] = p_i$, for $1 \leq i \leq r$.

Research supported by the Chinese Natural Science Foundation.

1405

¹ Beijing Normal University, Beijing, China.

Iteration is defined as follows: $\sigma^{n+1}(1)$ is obtained by replacing all 0's in $\sigma^n(1)$ by $\sigma(0) = 0$, and all 1's by independent random matrices distributed as $\sigma(1)$.

Iterating σn times leads to an $N^n \times N^n$ random matrix $W^n = \sigma^n(1)$. Let $I_{kl}^n = I_k^n \times I_l^n$, where $I_k^n = [(k-1) N^{-n}, kN^{-n}]$, for $1 \le k$, $l \le N^n$. We call such a set I_{kl}^n a level-n square. We now consider the sets

$$A_n = \bigcup_{k,l} \left\{ I_{kl}^n : W_{kl}^n = 1 \right\}$$

The A_n decrease to a compact subset A of the unit square, which is called a random Cantor set.

1.2. Bernoulli Substitution and Mandelbrot Percolation Process

Definition 1.2. We call a random substitution σ a *Bernoulli* (random) substitution with parameter p if there is a set J of indices (k, l) such that $\sigma(1)_{kl} = 0$ if $(k, l) \notin J$ and $\mathbb{P}[\sigma(1)_{kl} = 1] = 1 - \mathbb{P}[\sigma(1)_{kl} = 0] = p$ for $(k, l) \in J$, independent of all other entries of $\sigma(1)$.

Example 1.3. Given N = 3, $J = \{(k, l) : k \neq 2 \text{ or } l \neq 2\}$, the limiting set A is called a *random Sierpinski carpet*.

Example 1.4. Given N > 1 and J includes the full set of indices, A is called a *Mandelbrot percolation process*.

For a random Cantor set A, A percolates means that A contains a connected component which has a nonempty intersection with the left and right side, of the unit square.

1.3. Morphology of Random Cantor Sets

Let A be a random Cantor set in the unit square generated by a Bernoulli substitution. πA denotes the projection of A onto the x axis. λ denotes the Lebesgue measure, and dim(\cdot) denotes the Hausdorff dimension of a set. The six states of A are defined as follows:

I. $A = \emptyset$, almost surely.

II. $\mathbb{P}[A \neq \emptyset] > 0$, but dim $(\pi A) = \dim(A)$.

III. $\dim(\pi A) < \dim(A)$ a.s. given $A \neq \emptyset$, but $\lambda(\pi A) = 0$, a.s.

IV. $0 < \lambda(\pi A) < 1$ a.s. given $A \neq \emptyset$.

- V. $\mathbb{P}[\lambda(\pi A) = 1] > 0$, but A does not percolate a.s.
- VI. A percolates with positive probability.

1406

Phase V in Mandelbrot Percolation Press

The following result tells us when a random Cantor set is in one of the first three phases. Let m_i be the average number of ones in the *l*th column of $\sigma(1)$, i.e.,

$$m_l = \sum_{i=1}^r p_i \sum_{k=1}^N U_i(k, l)$$

Theorem 1.5. Let A be a random Cantor set. Then:

1. $A = \emptyset$, a.s., iff $\sum_{i=1}^{N} m_i \le 1$ [unless $\sigma(1)$ contains exactly one 1 a.s.].

2.
$$\dim(\pi A) = \dim(A) \text{ iff } \sum_{l=1}^{N} m_l \log m_l \leq 0.$$

3. $\lambda(\pi A) = 0$ iff $\sum_{l=1}^{N} \log m_l \leq 0$.

Proof. See Dekking and Meester,⁽¹⁾ Theorem 2.1.

In the following, we will only consider the Mandelbrot percolation process, i.e., we will always assume that N = 3, J includes all the indices.

Example 1.6. For Mandelbrot percolation, we have $m_1 = m_2 = m_3 = 3p$. Hence $A = \emptyset$ a.s. for $0 \le p \le 1/9$, A is in phase II for 1/9 , there is no phase III: at <math>p = 1/3, A passes from II to IV.

1.4. Multivalued and Random Substitutions

Let $\Phi(1)$ be a nonempty set of words of length N, such that $0 \cdots 0 \notin \Phi(1)$. Let $\Phi(0)$ be the complement of $\Phi(1)$ in $\{0, 1\}^N$. For words w and w', ww' denotes the concatenation of w and w'. Furthermore, we define the following sets:

$$\Phi(vw) = \left\{ v'w' \mid v' \in \Phi(v), w' \in \Phi(w) \right\}$$
$$\Phi^n(1) = \left\{ \Phi(w) \mid w \in \Phi^{n-1}(1) \right\}, \qquad n \ge 2$$

The set $\Phi^n(0)$ is defined analogously.

Lemma 1.7. $\Phi^{n}(0) = \{0, 1\}^{N^{n}} \setminus \Phi^{n}(1)$, for all $n \ge 1$.

Proof. See Dekking and Meester,⁽¹⁾ Lemma 3.1.

Proposition 1.8. Let σ_p be a Bernoulli random substitution and define

$$\pi_0(p) = 1$$

$$\pi_n(p) = \mathbb{P}[\sigma_n^n(1) \in \Phi^n(1)], \qquad n \ge 1$$

Then we have, for all $n \ge 0$,

$$\pi_{n+1}(p) = \pi_1(p\pi_n(p))$$

Proof. See Dekking and Meester,⁽¹⁾ Proposition 3.3.

The set $\Phi(1)$ is said to be *increasing* if the following is true: if $w = w_1 \cdots w_N \in \Phi(1)$ and $w_i = 0$ for some *i*, then $w' = w_1 \cdots w_{i-1} 1 w_{i+1} \cdots w_N \in \Phi(1)$. If $\Phi(1)$ is increasing, it follows from Grimmett,⁽²⁾ Section 2.5, that $\pi_1(p)$ is an increasing function in *p*. We define an iteration function G_p as follows:

$$G_p(x) = \pi_1(px), \quad x, p \in [0, 1]$$

It follows from Proposition 1.8 that $\pi_{n+1}(p) = G_p(\pi_n(p))$ and we obtain $\pi_n(p) = G_p^n(1), n \ge 1$. If $\Phi(1)$ is increasing, $G_p(\cdot)$ is increasing and hence $\pi^{\Phi}(p) = \lim_{n \to \infty} \pi_n(p)$ is equal to the largest fixed point of G_p . We define

$$p_c(\boldsymbol{\Phi}) = \inf\{p \mid \pi^{\boldsymbol{\Phi}}(p) > 0\}$$

Lemma 1.9. Consider a Bernoulli random substitution and let $\Phi(1)$ be an increasing set. Suppose that $(\partial/\partial p) \pi_1(p)|_{p=1} < 1$. Then $p_c(\Phi) < 1$ and $p_c(\Phi)$ is equal to the smallest p for which the following system has a solution:

$$\begin{cases} G_{p}(x) = x \\ \frac{\partial}{\partial x} G_{p}(x) = 1 \end{cases}$$
^(*)

Proof. See Dekking and Meester,⁽¹⁾ Lemma 3.4.

Lemma 1.10. Let

$$p_{IV,V} = \inf\{p: \mathbb{P}[\lambda(\pi A) = 1] > 0\}$$

Then $p_{1V,V} \leq 0.7307$.

Proof. Take

$$\Phi(1) = \left\{ (u_{kl}): 1 \le k, l \le 3, \text{ and } \sum_{k=1}^{3} u_{kl} > 0, 1 \le l \le 3 \right\}$$

Then we have $G_p(x) = [1 - (1 - px)^3]^3$.

1408

Using (*) of Lemma 1.9, it follows that

$$x \approx 0.791701$$

 $p = p_c(\Phi) \approx 0.730661$

2. IMPROVING THE ESTIMATION OF THE UPPER BOUND OF $p_{1V,V}$

We call a 0-1-valued word $u = (u_{ij})$, $1 \le i \le N$, $1 \le j \le M$, a fully projected matrix if $\sum_{i=1}^{N} u_{ij} > 0$ for all *j*. In Lemma 1.10, $\Phi(1)$ corresponds the set of 3×3 fully projected matrices. The defect of this method is that $\Phi^{m}(1)$ (m > 1) is much smaller than the set of $3^{m} \times 3^{m}$ fully projected matrices. In this section, we will improve the estimation of the upper bound of $p_{1V,V}$ by constructing the iterations of $3^{m} \times 3^{m}$ fully projected matrices.

Definition 2.1. For $m \ge 0$, $k \ge 1$,

$$T_{m,k} := \left\{ w \in \{0, 1\}^{3^{m_k}} : |w| := \sum_i > 0 \right\}$$
$$\Psi_{m,k} := T_{m,k}^{3^m}$$
$$\Phi_m(1) := \Psi_{m,1}$$

From the definitions, $\Psi_{m,k}$ denotes the set of $3^m \times 3^m k$ fully projected matrices, and $\Phi_1(1)$ is the same as the Φ in Lemma 1.10. Let $\Phi_m(0) = \{0, 1\}^{3^{2m}} \setminus \Phi_m(1)$. Iteration is the same as that in Section 1.4. We have, according to Lemma 1.7,

$$\Phi_m^n(0) = \{0, 1\}^{3^{2m}} \setminus \Phi_m^n(1), \qquad \forall m, n \ge 1$$

Proposition 2.2. For all $m, n \ge 1$, let

$$\pi_n^{(m)}(p) = \mathbb{P}[\sigma_p^{mn}(1) \in \Phi_m^n(1)]$$

Then

$$\pi_{n+1}^{(m)}(p) = \left[\sum_{i_{1}=1}^{3} C_{3}^{i_{1}} p^{i_{1}} (1-p)^{3-i_{1}} \left[\sum_{i_{2}=1}^{3i_{1}} C_{3i_{1}}^{i_{2}} p^{i_{2}} (1-p)^{3i_{1}-i_{2}} \right] \\ \times \left[\left(\sum_{i_{m-1}=1}^{3i_{m-2}} C_{3i_{m-2}}^{i_{m-1}} p^{i_{m-1}} (1-p)^{3i_{m-2}-i_{m-1}} \right] \\ \times \left[\sum_{i_{m}=1}^{3i_{m-1}} C_{3i_{m-1}}^{i_{m}} (p\pi_{n}^{(m)}(p))^{i_{m}} (1-p\pi_{n}^{(m)}(p))^{3i_{m-1}-i_{m}} \right]^{3} \right]^{3} \cdots \right]^{3} \left]^{3} \right]$$

where $i_0 = 1$.

Proof. For m = 1, it follows from Proposition 1.8. For m > 1, it is not difficult to see that

$$\pi_{1}^{(m)}(p) = \left[\sum_{i_{1}=1}^{3} C_{3}^{i_{1}} p^{i_{1}} (1-p)^{3-i_{1}} \left[\sum_{i_{2}=1}^{3i_{1}} C_{3i_{1}}^{i_{2}} p^{i_{2}} (1-p)^{3i_{1}-i_{2}} \right] \\ \times \left[\cdots \left[\sum_{i_{m-1}=1}^{3i_{m-2}} C_{3i_{m-2}}^{i_{m-1}} p^{i_{m-1}} (1-p)^{3i_{m-2}-i_{m-1}} \right] \\ \times \left[\sum_{i_{m}=1}^{3i_{m-1}} C_{3i_{m-1}}^{i_{m}} p^{i_{m}} (1-p)^{3i_{m-1}-i_{m}} \right]^{3} \cdots \right]^{3} \left]^{3} \cdots \right]^{3} \right]^{3}$$

On the other hand,

$$\pi_{n+1}^{(m)}(p) = \sum_{v \in \Phi_{m-1}(1)} \mathbb{P}(\sigma_p^{m-1}(1) = v) \ \mathbb{P}(\sigma_p^{mm}(\sigma_p(v)) \in \Phi_m^{n+1}(1))$$

To calculate $\mathbb{P}(\sigma_p^{nm}(\sigma_p(v)) \in \Phi_m^{n+1}(1))$, we introduce some notations: for words $v, w \in \Phi_k(1), k \ge 1$, $|w| = \sum_i w_i, b \le w$ means $v_i \le w_i$ for all *i*; $\tilde{v} \in \Phi_{k+1}(1)$ is obtained by replacing all 0's in v by (00000000), and all 1's by (11111111).

Note that $\sigma_p(v) \leq \tilde{v}$; for a fixed word $w \in \Phi_m(1)$, if $w \leq \tilde{v}$, then $\sigma_p^{mn}(\sigma_p(v)) \notin \Phi_m^n(w)$ for all *n*. But $\sigma_p^{mn}(\sigma_p(v))$ can be written as

$$\sigma_p^{mn}(\sigma_p(v)) = \sigma_p^{mn}(u_1) \cdots \sigma_p^{mn}(u_N), \qquad N = 3^{2m}$$

and $u_1, ..., u_N$ are independent. Using the same method as in the proof of Proposition 1.8, we have

$$\mathbb{P}(\sigma_p^{nm}(\sigma_p(v)) \in \Phi_m^{n+1}(1)) = \sum_{\substack{w \in \Phi_m(1) \\ w \leq \tilde{v}}} (p\pi_n^{(m)}(p))^{|w|} (1 - p\pi_n^{(m)}(p))^{9|v| - |w|}$$

In the similar way, we have

$$\pi_1^{(m)}(p) = \sum_{v \in \Phi_{m-1}(1)} \mathbb{P}(\sigma_p^{m-1}(1) = v) \sum_{\substack{w \in \Phi_m(1)\\ w \leq \tilde{v}}} p^{|w|}(1-p)^{9|v| - |w|}$$

Comparing the representation formulas of $\pi_1^{(m)}(p)$ and $\pi_{n+1}^{(m)}(p)$, we accomplish the proof.

It follows from Proposition 2.2 that for fixed *m*, if $n\uparrow$ or $p\downarrow$, then $\pi_n^{(m)}(p)\downarrow$. Hence the limit $\lim_{n\to\infty} \pi_n^{(m)}(p)$ exists. The problem is whether or not this limit is positive. Let

$$p_{m} = \inf\{p: \pi_{\infty}^{(m)}(p) = \lim_{n \to \infty} \pi_{n}^{(m)}(p) > 0\}$$

Then we have the following result.

Phase V in Mandelbrot Percolation Press

Lemma 2.3. For all $m \ge 1$, $p_{1V,V} \le p_m$.

Proof. Let A be a Mandelbrot percolation process with $A = \bigcap A_n$. Then

$$p_{\mathrm{IV},\mathrm{V}} = \inf\{p: \mathbb{P}[\lambda(\pi A) = 1] > 0\}$$

and

$$\lambda(\pi A) = 1 \Leftrightarrow \lambda(\pi A_n) = 1, \quad \forall n \ge 1 \Leftrightarrow \sigma_n^n(1) \in \Phi_n(1), \quad \forall n \ge 1$$

Hence

$$\mathbb{P}[\lambda(\pi A) = 1] = \lim_{n \to \infty} \pi_1^n(p)$$

For all $m \ge 1$, if $p > p_m$, then

$$0 < \lim_{n \to \infty} \pi_n^{(m)}(p) = \lim_{n \to \infty} \mathbb{P}[\sigma_p^{mn}(1) \in \Phi_m^n(1)]$$
$$\leq \lim_{n \to \infty} \mathbb{P}[\sigma_p^{mn}(1) \in \Phi_{mn}(1)] = \lim_{n \to \infty} \pi_1^{(mn)}(p)$$
$$= \mathbb{P}[\lambda(\pi A) = 1]$$

Hence $p > p_{IV,V}$.

Although we can define an iterate function $G_{p,m}(x)$ to find p_m as in Lemma 1.9, we estimate p_m by testing different values because of the lengthy expression of $(\partial/\partial x) G_{p,m}(x)$: for fixed p_0 , if $\pi_{\infty}^{(m)}(p_0) > 0$, then $p_m \leq p_0$; if $\pi_{\infty}^{(m)}(p_0) = 0$, then $p_m > p_0$. Now have the estimations of p_m for $m \leq 7$ as in Table I.

Lemma 2.4. $p_{IV,V} \leq 0.6317$.

7

m	p	$\pi^{(m)}_{\infty}(p)$		
1	0.7307	0.797379		
2	0.7056	0.716061		
3	0.6869	0.626459		
4	0.6712	0.530710		
5	0.6569	0.432689		
6	0.6437	0.348253		

0.270622

0.6317

Table I

3. IMPROVING THE ESTIMATION OF THE LOWER BOUND OF $p_{V,VI}$

In this section, we will estimate the lower bound of $p_{V,VI}$ by using the methods of ordinary branching processes. Because the construction of the process is somewhat complex, let us start from a simple estimation. Lemma 3.1 was proved in Chayes *et al.*,⁽³⁾ Section (b); we prove it again in order to introduce some useful notations.

In the following, a *level-n* square I_{kl}^n is said to be *open* if $\sigma_p^n(1)(k, l) = 1$; otherwise it is *closed*.

Lemma 3.1.
$$p_{v,vi} > 1/\sqrt{3}$$
.

Proof. Consider the segment $S = \{1/3\} \times [0, 1]$ in Fig. 1.

We say a *level-n* segment (common side which is in S of two level-n squares) passable if the two consecutive *level-n* squares are both open.

Let Z_n be the number of passable level-n segments in S. Then

$$EZ_1 = 3p^2$$

Hence for $p \leq 1/\sqrt{3}$, the branching process $\{Z_n\}_{n \geq 1}$ dies out with probablity 1.

Lemma 3.2. $p_{V,VI} > 0.5917$.

Proof. Continue to use the notations in Lemma 3.1. Let S_1 denote the common side of I_{11}^1 and I_{14}^1 . If I_{11}^1 and I_{14}^1 are both open, we construct a branching process as follows.

I ¹ ₁₁	I ¹ ₁₄	
I ¹ ₁₂	I_{15}^1	
I ¹ ₁₃	I ¹ ₁₆	
S		

Fig. 1

In Fig. 2, we say a *level-n* segment $(n \ge 2)$ in S_1 passable if there is a connected component in the two consecutive *level-(n-1)* squares I_k^{n-1} and I_l^{n-1} generated by *level-n* open squares that crosses it and connects into left and right shadows. We can see in the figure that a *level-n* segment's passability is the same as in Lemma 3.1 when it is not in the middle of a *level-(n-1)* segment.

Let Z_n denote the number of *level*-(n+1) passable segments in S_1 . Then

$$EZ_1 = 2p^2 + [p(1 - (1 - p)^2) + p(1 - p)^2 p(1 - (1 - p)^3)]^2$$

If p < 0.591721, then $EZ_1 < 1$. And for the common side S_2 of I_{12}^1 and I_{15}^1 , S_3 of I_{13}^1 and I_{16}^1 , we construct branching processes by the same method. Then the three processes are i.i.d. Hence they will all die out when $p \le 0.5917$, i.e., the segment S cannot be crossed with probability 1.

Lemma 3.3. $p_{V,VI} > 0.6346$.

Proof. We divide S into three branching processes as in Lemma 3.2. For S_1 , see Fig. 3. We say a *level*-(2n + 1) segment in S_1 is passable if there is a connected component in the two consecutive *level*-(2n-1) squares I_k^{2n-1} and I_l^{2n-1} generated by *level*-(2n+1) open squares that crosses it and connects into left and right shadows. Let Z_n denote the number of *level*-(2n + 1) passable segments in S_1 . A computer calculation shows that if

p = 0.6346

then

$$EZ_1 = 0.999658$$

Hence $p_{V,VI} > 0.6346$.

Proposition 3.4. The phase V in Mandelbrot percolation exists.

Proof. From Lemmas 2.4 and 3.3 we have

$$p_{\mathrm{IV,V}} < p_{\mathrm{V,VI}}$$

REFERENCES

- 1. M. Dekking and R. Meester, On the structure of Mandelbrot's percolation process and other random Cantor sets, J. Stat. Phys. 58:1109-1126 (1990).
- 2. G. R. Grimmett, Percolation (Springer-Verlag, Berlin, 1989).
- 3. J. T. Chayes, L. Chayes, and R. Durrett, Connectivity properties of Mandelbrot's percolation process, *Prob. Theory Related Fields* 77:307-324 (1988).