The Existence of Phase V in the Mandelbrot Percolation Process

Jiang $\mathbf{W u}^{1}$ and Xiufang Liu ${ }^{1}$

Received July 14, 1994; final November 30, 1994

Abstract

Dekking and Meester defined six phases for a subclass of random Cantor sets consisting of those generated by Bernoulli random substitutions. They proved that the random Sierpinski carpet passed through all these phases as p tended from 0 to 1 , but they were not able to prove the existence of phase V in the Mandelbrot percolation process. In this paper, we accomplish the proof by improving their methods.

KEY WORDS: Mandelbrot percolation; random substitution.

1. ORIGIN OF THE PROBLEM

1.1. Random Substitutions and Random Cantor Sets

Definition 1.1. We call $\sigma:\{0,1\} \rightarrow\{0,1\}^{N \times N}$ a random substitution if:
(i) We have

$$
\sigma(0)=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0
\end{array}\right)
$$

(ii) $\sigma(1) \in\left\{U_{1}, \ldots, U_{r}\right\}, U_{1}, \ldots, U_{r}$ are $N \times N 0$-l-valued matrices, and there are positive numbers p_{1}, \ldots, p_{r} with $p_{1}+\cdots+p_{r}=1$ such that $\mathbb{P}\left[\sigma(1)=U_{i}\right]=p_{i}$, for $l \leqslant i \leqslant r$.

[^0]Iteration is defined as follows: $\sigma^{n+1}(1)$ is obtained by replacing all 0 's in $\sigma^{n}(1)$ by $\sigma(0)=0$, and all 1 's by independent random matrices distributed as $\sigma(1)$.

Iterating σn times leads to an $N^{n} \times N^{n}$ random matrix $W^{n}=\sigma^{n}(1)$. Let $I_{k l}^{n}=I_{k}^{n} \times I_{l}^{n}$, where $I_{k}^{n}=\left[(k-1) N^{-n}, k N^{-n}\right]$, for $1 \leqslant k, l \leqslant N^{n}$. We call such a set $I_{k l}^{n}$ a level-n square. We now consider the sets

$$
A_{n}=\bigcup_{k, l}\left\{I_{k l}^{n}: W_{k i}^{n}=1\right\}
$$

The A_{n} decrease to a compact subset A of the unit square, which is called a random Cantor set.

1.2. Bernoulli Substitution and Mandelbrot Percolation Process

Definition 1.2. We call a random substitution σ a Bernoulli (random) substitution with parameter p if there is a set J of indices (k, l) such that $\sigma(1)_{k l}=0$ if $(k, l) \notin J$ and $\mathbb{P}\left[\sigma(1)_{k l}=1\right]=1-\mathbb{P}\left[\sigma(1)_{k l}=0\right]=p$ for $(k, l) \in J$, independent of all other entries of $\sigma(1)$.

Example 1.3. Given $N=3, J=\{(k, l): k \neq 2$ or $l \neq 2\}$, the limiting set A is called a random Sierpinski carpet.

Example 1.4. Given $N>1$ and J includes the full set of indices, A is called a Mandelbrot percolation process.

For a random Cantor set A, A percolates means that A contains a connected component which has a nonempty intersection with the left and right side, of the unit square.

1.3. Morphology of Random Cantor Sets

Let A be a random Cantor set in the unit square generated by a Bernoulli substitution. πA denotes the projection of A onto the x axis. λ denotes the Lebesgue measure, and $\operatorname{dim}(\cdot)$ denotes the Hausdorff dimension of a set. The six states of A are defined as follows:
I. $A=\varnothing$, almost surely.
II. $\mathbb{P}[A \neq \varnothing]>0$, but $\operatorname{dim}(\pi A)=\operatorname{dim}(A)$.
III. $\operatorname{dim}(\pi A)<\operatorname{dim}(A)$ a.s. given $A \neq \varnothing$, but $\lambda(\pi A)=0$, a.s.
IV. $0<\lambda(\pi A)<1$ a.s. given $A \neq \varnothing$.
V. $\mathbb{P}[\lambda(\pi A)=1]>0$, but A does not percolate a.s.
VI. A percolates with positive probability.

The following result tells us when a random Cantor set is in one of the first three phases. Let m_{l} be the average number of ones in the l th column of $\sigma(1)$, i.e.,

$$
m_{l}=\sum_{i=1}^{r} p_{i} \sum_{k=1}^{N} U_{i}(k, l)
$$

Theorem 1.5. Let A be a random Cantor set. Then:

1. $A=\varnothing$, a.s., iff $\sum_{l=1}^{N} m_{l} \leqslant 1$ [unless $\sigma(1)$ contains exactly one 1 a.s.].
2. $\operatorname{dim}(\pi A)=\operatorname{dim}(A)$ iff $\sum_{l=1}^{N} m_{l} \log m_{l} \leqslant 0$.
3. $\lambda(\pi A)=0$ iff $\sum_{l=1}^{N} \log m_{l} \leqslant 0$.

Proof. See Dekking and Meester, ${ }^{(1)}$ Theorem 2.1.
In the following, we will only consider the Mandelbrot percolation process, i.e., we will always assume that $N=3, J$ includes all the indices.

Example 1.6. For Mandelbrot percolation, we have $m_{1}=m_{2}=$ $m_{3}=3 p$. Hence $A=\varnothing$ a.s. for $0 \leqslant p \leqslant 1 / 9, A$ is in phase II for $1 / 9<p \leqslant 1 / 3$, there is no phase III: at $p=1 / 3, A$ passes from II to IV.

1.4. Multivalued and Random Substitutions

Let $\Phi(1)$ be a nonempty set of words of length N, such that $0 \cdots 0 \notin \Phi(1)$. Let $\Phi(0)$ be the complement of $\Phi(1)$ in $\{0,1\}^{N}$. For words w and $w^{\prime}, w w^{\prime}$ denotes the concatenation of w and w^{\prime}. Furthermore, we define the following sets:

$$
\begin{aligned}
& \Phi(v w)=\left\{v^{\prime} w^{\prime} \mid v^{\prime} \in \Phi(v), w^{\prime} \in \Phi(w)\right\} \\
& \Phi^{n}(1)=\left\{\Phi(w) \mid w \in \Phi^{n-1}(1)\right\}, \quad n \geqslant 2
\end{aligned}
$$

The set $\Phi^{\prime \prime}(0)$ is defined analogously.
Lemma 1.7. $\Phi^{\prime \prime}(0)=\{0,1\}^{N^{n}} \backslash \Phi^{\prime \prime}(1)$, for all $n \geqslant 1$.
Proof. See Dekking and Meester, ${ }^{(1)}$ Lemma 3.1.
Proposition 1.8. Let σ_{p} be a Bernoulli random substitution and define

$$
\begin{aligned}
& \pi_{0}(p)=1 \\
& \pi_{n}(p)=\mathbb{P}\left[\sigma_{p}^{n}(1) \in \Phi^{n}(1)\right], \quad n \geqslant 1
\end{aligned}
$$

Then we have, for all $n \geqslant 0$,

$$
\pi_{n+1}(p)=\pi_{1}\left(p \pi_{n}(p)\right)
$$

Proof. See Dekking and Meester, ${ }^{(1)}$ Proposition 3.3.
The set $\Phi(1)$ is said to be increasing if the following is true: if $w=$ $w_{1} \cdots w_{N} \in \Phi(1)$ and $w_{i}=0$ for some i, then $w^{\prime}=w_{1} \cdots w_{i-1} 1 w_{i+1} \cdots w_{N} \in$ $\Phi(1)$. If $\Phi(1)$ is increasing, it follows from Grimmett, ${ }^{(2)}$ Section 2.5 , that $\pi_{1}(p)$ is an increasing function in p. We define an iteration function G_{p} as follows:

$$
G_{p}(x)=\pi_{1}(p x), \quad x, p \in[0,1]
$$

It follows from Proposition 1.8 that $\pi_{n+1}(p)=G_{p}\left(\pi_{n}(p)\right)$ and we obtain $\pi_{n}(p)=G_{p}^{n}(1), n \geqslant 1$. If $\Phi(1)$ is increasing, $G_{p}(\cdot)$ is increasing and hence $\pi^{\Phi}(p)=\lim _{n \rightarrow \infty} \pi_{n}(p)$ is equal to the largest fixed point of G_{p}. We define

$$
p_{c}(\Phi)=\inf \left\{p \mid \pi^{\Phi}(p)>0\right\}
$$

Lemma 1.9. Consider a Bernoulli random substitution and let $\Phi(1)$ be an increasing set. Suppose that $\left.(\partial / \partial p) \pi_{1}(p)\right|_{p=1}<1$. Then $p_{c}(\Phi)<1$ and $p_{c}(\Phi)$ is equal to the smallest p for which the following system has a solution:

$$
\left\{\begin{array}{l}
G_{p}(x)=x \tag{*}\\
\frac{\partial}{\partial x} G_{p}(x)=1
\end{array}\right.
$$

Proof. See Dekking and Meester, ${ }^{(1)}$ Lemma 3.4.
Lemma 1.10. Let

$$
p_{\mathrm{IV}, \mathrm{~V}}=\inf \{p: \mathbb{P}[\lambda(\pi A)=1]>0\}
$$

Then $p_{\mathrm{Iv}, \mathrm{v}} \leqslant 0.7307$.
Proof. Take

$$
\Phi(1)=\left\{\left(u_{k l}\right): 1 \leqslant k, l \leqslant 3, \text { and } \sum_{k=1}^{3} u_{k l}>0,1 \leqslant l \leqslant 3\right\}
$$

Then we have $G_{p}(x)=\left[1-(1-p x)^{3}\right]^{3}$.

Using (*) of Lemma 1.9, it follows that

$$
\begin{aligned}
& x \approx 0.791701 \\
& p=p_{c}(\Phi) \approx 0.730661
\end{aligned}
$$

2. IMPROVING THE ESTIMATION OF THE UPPER BOUND OF $\boldsymbol{p}_{\mathrm{Iv}, \mathrm{v}}$

We call a $0-1$-valued word $u=\left(u_{i j}\right), 1 \leqslant i \leqslant N, 1 \leqslant j \leqslant M$, a fully projected matrix if $\sum_{i=1}^{N} u_{i j}>0$ for all j. In Lemma 1.10, $\Phi(1)$ corresponds the set of 3×3 fully projected matrices. The defect of this method is that $\Phi^{m}(1)(m>1)$ is much smaller than the set of $3^{m} \times 3^{m}$ fully projected matrices. In this section, we will improve the estimation of the upper bound of $p_{\mathrm{Iv}, \mathrm{v}}$ by constructing the iterations of $3^{m} \times 3^{m}$ fully projected matrices.

Definition 2.1. For $m \geqslant 0, k \geqslant 1$,

$$
\begin{aligned}
T_{m, k} & :=\left\{w \in\{0,1\}^{3^{m k} k}:|w|:=\sum_{i}>0\right\} \\
\Psi_{m, k} & :=T_{m, k}^{3^{m}} \\
\Phi_{m}(1) & :=\Psi_{m, 1}
\end{aligned}
$$

From the definitions, $\Psi_{m, k}$ denotes the set of $3^{m} \times 3^{m} k$ fully projected matrices, and $\Phi_{1}(1)$ is the same as the Φ in Lemma 1.10. Let $\Phi_{m}(0)=$ $\{0,1\}^{3^{2 m}} \backslash \Phi_{m}(1)$. Iteration is the same as that in Section 1.4. We have, according to Lemma 1.7,

$$
\Phi_{m}^{n}(0)=\{0,1\}^{3^{2 m}} \backslash \Phi_{m}^{n}(1), \quad \forall m, n \geqslant 1
$$

Proposition 2.2. For all $m, n \geqslant 1$, let

$$
\pi_{n}^{(m)}(p)=\mathbb{P}\left[\sigma_{p}^{n m}(1) \in \Phi_{m}^{n}(1)\right]
$$

Then

$$
\begin{aligned}
\pi_{n+1}^{(m)}(p)= & {\left[\sum _ { i _ { 1 } = 1 } ^ { 3 } C _ { 3 } ^ { i _ { 1 } } p ^ { i } (1 - p) ^ { 3 - i _ { 1 } } \left[\sum_{i_{2}=1}^{3 i_{1}} C_{3 i_{1}}^{i_{1}} p^{i_{2}}(1-p)^{3 i_{1}-i_{2}}\right.\right.} \\
& \times\left[\cdots \left[\sum_{i_{m-1}=1}^{3 i_{m-2}} C_{3 i_{m-2}}^{i_{m-1}} p^{i_{m-1}}(1-p)^{3 i_{m-2}-i_{m-1}}\right.\right. \\
& \left.\left.\left.\left.\times\left[\sum_{i_{m}=1}^{3 i_{m-1}} C_{3 i_{m-1}}^{i_{m}}\left(p \pi_{n}^{(m)}(p)\right)^{i_{m}}\left(1-p \pi_{n}^{(m)}(p)\right)^{3 i_{m-1}-i_{m}}\right]^{3}\right]^{3} \cdots\right]^{3}\right]^{3}\right]^{3}
\end{aligned}
$$

where $i_{0}=1$.

Proof. For $m=1$, it follows from Proposition 1.8.
For $m>1$, it is not difficult to see that

$$
\begin{aligned}
\pi_{1}^{(m)}(p)= & {\left[\sum _ { i _ { 1 } = 1 } ^ { 3 } C _ { 3 } ^ { i _ { 1 } } p ^ { i _ { 1 } } (1 - p) ^ { 3 - i _ { 1 } } \left[\sum_{i_{2}=1}^{3 i_{1}} C_{3 i_{1}}^{i_{1}} p^{i_{2}}(1-p)^{3 i_{1}-i_{2}}\right.\right.} \\
& \times\left[\cdots \left[\sum_{i_{m-1}=1}^{3 i_{m-2}} C_{3 i_{m-2}}^{i_{m-1}} p^{i_{m-1}}(1-p)^{3 i_{m-2}-i_{m-1}}\right.\right. \\
& \left.\left.\left.\times\left[\sum_{i_{m=1}=1}^{3 i_{m-1}} C_{3 i_{m-1}}^{i_{m}} p^{i_{m}}(1-p)^{3 i_{m-1}-i_{m}}\right]^{3}\right]^{3} \cdots\right]^{3}\right]^{3}
\end{aligned}
$$

On the other hand,

$$
\pi_{n+1}^{(m)}(p)=\sum_{v \in \Phi_{m-1}(1)} \mathbb{P}\left(\sigma_{p}^{m-1}(1)=v\right) \mathbb{P}\left(\sigma_{p}^{m n}\left(\sigma_{p}(v)\right) \in \Phi_{m}^{n+1}(1)\right)
$$

To calculate $\mathbb{P}\left(\sigma_{p}^{m \prime \prime}\left(\sigma_{p}(v)\right) \in \Phi_{m}^{n+1}(1)\right)$, we introduce some notations: for words $v, w \in \Phi_{k}(1), k \geqslant 1,|w|=\sum_{i} w_{i}, \quad b \leqslant w$ means $v_{i} \leqslant w_{i}$ for all i; $\tilde{v} \in \Phi_{k+1}(1)$ is obtained by replacing all 0 's in v by (000000000), and all l's by (111111111).

Note that $\sigma_{p}(v) \leqslant \tilde{v}$; for a fixed word $w \in \Phi_{m}(1)$, if $w \leqslant \tilde{v}$, then $\sigma_{p}^{m m}\left(\sigma_{p}(v)\right) \notin \Phi_{m}^{n}(w)$ for all n. But $\sigma_{p}^{m m}\left(\sigma_{p}(v)\right)$ can be written as

$$
\sigma_{p}^{m m}\left(\sigma_{p}(v)\right)=\sigma_{p}^{m n}\left(u_{1}\right) \cdots \sigma_{p}^{m m}\left(u_{N}\right), \quad N=3^{2 m}
$$

and u_{1}, \ldots, u_{N} are independent. Using the same method as in the proof of Proposition 1.8, we have

$$
\mathbb{P}\left(\sigma_{p}^{m n}\left(\sigma_{p}(v)\right) \in \Phi_{m}^{n+1}(1)\right)=\sum_{\substack{w \in \Phi_{m}(1) \\ v \leqslant \bar{i}}}\left(p \pi_{n}^{(m)}(p)\right)^{|w|}\left(1-p \pi_{n}^{(m)}(p)\right)^{9|v|-|w|}
$$

In the similar way, we have

$$
\pi_{1}^{(m)}(p)=\sum_{x \in \Phi_{m-1}(1)} \mathbb{P}\left(\sigma_{p}^{m-1}(1)=v\right) \sum_{\substack{w \in \Phi_{\Phi_{m}}(1) \\ w \leqslant \tilde{v}}} p^{|w|}(1-p)^{9|n|-|w|}
$$

Comparing the representation formulas of $\pi_{1}^{(m)}(p)$ and $\pi_{n+1}^{(m)}(p)$, we accomplish the proof.

It follows from Proposition 2.2 that for fixed m, if $n \uparrow$ or $p \downarrow$, then $\pi_{n}^{(m)}(p) \downarrow$. Hence the limit $\lim _{n \rightarrow \alpha_{i}} \pi_{n}^{(m)}(p)$ exists. The problem is whether or not this limit is positive. Let

$$
p_{m}=\inf \left\{p: \pi_{\infty}^{(m)}(p)=\lim _{n \rightarrow \infty} \pi_{n}^{(m)}(p)>0\right\}
$$

Then we have the following result.

Lemma 2.3. For all $m \geqslant 1, p_{\mathrm{IV}, \mathrm{v}} \leqslant p_{m}$.
Proof. Let A be a Mandelbrot percolation process with $A=\cap A_{n}$. Then

$$
p_{\mathrm{IV}, \mathrm{v}}=\inf \{p: \mathbb{P}[\lambda(\pi A)=1]>0\}
$$

and

$$
\lambda(\pi A)=1 \Leftrightarrow \lambda\left(\pi A_{n}\right)=1, \quad \forall n \geqslant 1 \Leftrightarrow \sigma_{p}^{n}(1) \in \Phi_{n}(1), \quad \forall n \geqslant 1
$$

Hence

$$
\mathbb{P}[\lambda(\pi A)=1]=\lim _{n \rightarrow \infty} \pi_{1}^{n}(p)
$$

For all $m \geqslant 1$, if $p>p_{m}$, then

$$
\begin{aligned}
0 & <\lim _{n \rightarrow \infty} \pi_{n}^{(m)}(p)=\lim _{n \rightarrow \infty} \mathbb{P}\left[\sigma_{p}^{m n}(1) \in \Phi_{m}^{n}(1)\right] \\
& \leqslant \lim _{n \rightarrow \infty} \mathbb{P}\left[\sigma_{p}^{m m}(1) \in \Phi_{m n}(1)\right]=\lim _{n \rightarrow \infty} \pi_{1}^{(m n)}(p) \\
& =\mathbb{P}[\lambda(\pi A)=1]
\end{aligned}
$$

Hence $p>p_{\mathrm{IV}, \mathrm{v}}$.
Although we can define an iterate function $G_{p, m}(x)$ to find p_{m} as in Lemma 1.9, we estimate p_{m} by testing different values because of the lengthy expression of $(\partial / \partial x) G_{p, m}(x)$: for fixed p_{0}, if $\pi_{\infty}^{(m)}\left(p_{0}\right)>0$, then $p_{m} \leqslant p_{0}$; if $\pi_{\infty}^{(m)}\left(p_{0}\right)=0$, then $p_{m}>p_{0}$. Now have the estimations of p_{m} for $m \leqslant 7$ as in Table I.

Lemma 2.4. $p_{\text {IV.v }} \leqslant 0.6317$.
Table I

m	p	$\pi_{\infty}^{(m)}(p)$
1	0.7307	0.797379
2	0.7056	0.716061
3	0.6869	0.626459
4	0.6712	0.530710
5	0.6569	0.432689
6	0.6437	0.348253
7	0.6317	0.270622

3. IMPROVING THE ESTIMATION OF THE LOWER BOUND OF $p_{\mathrm{v}, \mathrm{v}}$

In this section, we will estimate the lower bound of $p_{\mathrm{v}, \mathrm{vi}}$ by using the methods of ordinary branching processes. Because the construction of the process is somewhat complex, let us start from a simple estimation. Lemma 3.1 was proved in Chayes et al., ${ }^{(3)}$ Section (b); we prove it again in order to introduce some useful notations.

In the following, a level-n square $I_{k l}^{n}$ is said to be open if $\sigma_{p}^{\prime \prime}(1)(k, l)=1$; otherwise it is closed.

Lemma 3.1. $p_{\mathrm{v}, \mathrm{VI}}>1 / \sqrt{3}$.
Proof. Consider the segment $S=\{1 / 3\} \times[0,1]$ in Fig. 1 .
We say a level-n segment (common side which is in S of two level-n squares) passable if the two consecutive level-n squares are both open.

Let Z_{n} be the number of passable level- n segments in S. Then

$$
E Z_{1}=3 p^{2}
$$

Hence for $p \leqslant 1 / \sqrt{3}$, the branching process $\left\{Z_{n}\right\}_{n \geqslant 1}$ dies out with probablity 1.

Lemma 3.2. $p_{\mathrm{V}, \mathrm{VI}}>0.5917$.
Proof. Continue to use the notations in Lemma 3.1. Let S_{1} denote the common side of I_{11}^{1} and I_{14}^{1}. If I_{11}^{1} and I_{14}^{1} are both open, we construct a branching process as follows.

Fig. 1

Fig. 2

In Fig. 2, we say a level-n segment $(n \geqslant 2)$ in S_{1} passable if there is a connected component in the two consecutive level- $(n-1)$ squares I_{k}^{n-1} and $I_{I}^{\prime-1}$ generated by level-n open squares that crosses it and connects into left and right shadows. We can see in the figure that a level-n segment's passability is the same as in Lemma 3.1 when it is not in the middle of a level- $(n-1)$ segment.

Let Z_{n} denote the number of level- $(n+1)$ passable segments in S_{1}. Then

$$
E Z_{1}=2 p^{2}+\left[p\left(1-(1-p)^{2}\right)+p(1-p)^{2} p\left(1-(1-p)^{3}\right)\right]^{2}
$$

If $p<0.591721$, then $E Z_{1}<1$. And for the common side S_{2} of I_{12}^{1} and I_{15}^{1}, S_{3} of I_{13}^{1} and I_{16}^{1}, we construct branching processes by the same method. Then the three processes are i.i.d. Hence they will all die out when $p \leqslant 0.5917$, i.e., the segment S cannot be crossed with probability 1 .

Lemma 3.3. $p_{\mathrm{v}, \mathrm{vI}}>0.6346$.

Proof. We divide S into three branching processes as in Lemma 3.2. For S_{1}, see Fig. 3. We say a level- $(2 n+1)$ segment in S_{1} is passable if there is a connected component in the two consecutive level- $(2 n-1)$ squares $I_{k}^{2 n-1}$ and $I_{l}^{2 n-1}$ generated by level $(2 n+1)$ open squares that crosses it and connects into left and right shadows. Let Z_{n} denote the number of level- $(2 n+1)$ passable segments in S_{1}. A computer calculation shows that if

$$
p=0.6346
$$

Fig. 3
then

$$
E Z_{1}=0.999658
$$

Hence $p_{\mathrm{V}, \mathrm{vI}}>0.6346$.
Proposition 3.4. The phase V in Mandelbrot percolation exists.
Proof. From Lemmas 2.4 and 3.3 we have

$$
p_{\mathrm{IV}, \mathrm{~V}}<p_{\mathrm{V}, \mathrm{vI}}
$$

REFERENCES

1. M. Dekking and R. Meester, On the structure of Mandelbrot's percolation process and other random Cantor sets, J. Stat. Phys. 58:1109-1126 (1990).
2. G. R. Grimmett, Percolation (Springer-Verlag, Berlin, 1989).
3. J. T. Chayes, L. Chayes, and R. Durrett, Connectivity properties of Mandelbrot's percolation process, Prob. Theory Related Fields 77:307-324 (1988).

[^0]: ${ }^{1}$ Beijing Normal University, Beijing, China.
 Research supported by the Chinese Natural Science Foundation.

