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The Existence of Phase V in the Mandelbrot
Percolation Process
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Dekking and Meester defined six phases for a subclass of random Cantor sets
consisting of those generated by Bernoulli random substitutions. They proved
that the random Sierpinski carpet passed through all these phases as p tended
from 0 to 1, but they were not able to prove the existence of phase V in the
Mandelbrot percolation process. In this paper, we accomplish the proof by
improving their methods.

KEY WORDS: Mandelbrot percolation; random substitution.

1. ORIGIN OF THE PROBLEM

1.1. Random Substitutions and Random Cantor Sets

Definition 1.1. We call o: {0, 1} — {0, 1}¥*" a random substitu-
tion if:

(i) We have

o(0)=| : :
0 -.. 0
(i) o(1)e{U,,., U}, U,,.., U, are Nx N 0-1-valued matrices, and

there are positive numbers p,,..,p, with p,+ .- + p,=1 such that
Plo(l)=U,]=p;, for I <i<r.
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Iteration is defined as follows: ¢”*'(1) is obtained by replacing all
¥’s in ¢"(1) by o(0)=0, and all I's by independent random matrices
distributed as o(1).

Iterating o n times leads to an N” x N” random matrix W”" =¢"(1). Let
Iy =I;x1I}, where I;=[(k—1)N™", kN~"], for 1<k, I<N". We call
such a set I}, a level-n square. We now consider the sets

An=U {1 Wi =1}

k.

The A,, decrease to a compact subset 4 of the unit square, which is called
a random Cantor set.

1.2. Bernoulli Substitution and Mandelbrot Percolation
Process

Definition 1.2. We call a random substitution ¢ a Bernoulli
(random) substitution with parameter p if there is a set J of indices (k, /)
such that o(1),,=0 if (k,/)¢J and P[o(l),=1]1=1—-P[o(1),=0]=p
for (k,I)e J, independent of all other entries of a(1).

Example 1.3. Given N=3, J={(k,): k#2 or I #2}, the limiting
set A is called a random Sierpinski carpet.

Example 1.4. Given N> 1 and J includes the full set of indices, A4
is called a Mandelbrot percolation process.

For a random Cantor set 4, A percolates means that 4 contains a
connected component which has a nonempty intersection with the left and
right side, of the unit square.

1.3. Morphology of Random Cantor Sets

Let 4 be a random Cantor set in the unit square generated by a
Bernoulli substitution. 74 denotes the projection of 4 onto the x axis.
A denotes the Lebesgue measure, and dim(-) denotes the Hausdorff
dimension of a set. The six states of 4 are defined as follows:

I. 4=, almost surely.

IL P[A#J]>0, but dim(zA4) =dim(A4).

ITI. dim(nA4) <dim(A4) a.s. given 4 # &, but A(m4)=0, a.s.

IV. 0<A(nd)<1 as. given A # .

V. P[AmA)=1]>0, but 4 does not percolate a.s.

VI. A percolates with positive probability.
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The following result tells us when a random Cantor set is in one of the
first three phases. Let m, be the average number of ones in the /th column
of a(1), ie.,

r N

my=7% p; Y. Uk, D
i=1 k=1

Theorem 1.5. Let 4 be a random Cantor set. Then:

1. A=¢, as, iff ¥, m,<1 [unless o(1) contains exactly one 1
as.].

2. dim(zd)=dim(4) iff 3", m,log m,<0.
3. Amd)=0iff £V, log m, <0,

Proof. See Dekking and Meester,'" Theorem 2.1. ||

In the following, we will only consider the Mandelbrot percolation
process, i.e., we will always assume that N =3, J includes all the indices.

Example 1.6. For Mandelbrot percolation, we have m,=m,=
my=3p Hence A= as. for0< p<1/9, 4isin phase Il for 1/9 < p<1/3,
there is no phase IIl: at p=1/3, 4 passes from II to IV.

1.4. Multivalued and Random Substitutions

Let &(1) be a nonempty set of words of length N, such that
0---0¢ D(1). Let @(0) be the complement of &(1) in {0, 1}". For words
w and w', ww' denotes the concatenation of w and w'. Furthermore, we
define the following sets:

D(vw) = {v'w' |v' € B(v), w' € D(w)}
O"(1)={D(w)|wed"" (1)}, nx2
The set @"(0) 1s defined analogously.
Lemma 1.7. &7(0)={0, 1}*\&"(1), for all n3>1.
Proof. See Dekking and Meester,'"” Lemma 3.1. §

Proposition 1.8. Let o, be a Bernoulli random substitution and
define

no(p) =1
n(p)=Plao,(1)e @"(1)], nzl
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Then we have, for all n >0,

o+ l(p) = nl(pnn(p))

Proof. See Dekking and Meester,!" Proposition 3.3. |}

The set @(1) is said to be increasing if the following is true: if w=
w,--wye®(1l) and w,=0 for some i, then w'=w,---w,_ 1w, ,---wye
®(1). If &(1) is increasing, it follows from Grimmett,'® Section 2.5, that
7,(p) is an increasing function in p. We define an iteration function G, as
follows:

G (x)=m(px), x,pel0,1]

It follows from Proposition 1.8 that =z, ,(p)=G,(n,(p)) and we obtain
n(p)=G,(1), n=1. If &(1) is increasing, G,(-) is increasing and hence
n®(p)=Ilim, ., , 7,(p) is equal to the largest fixed point of G,. We define

pA®)=inf{ p|n®(p)>0}

Lemma 1.9. Consider a Bernoulli random substitution and let
&(1) be an increasing set. Suppose that (8/0p) m,(p)!,.,<1. Then
p(D)<1 and p (D) is equal to the smallest p for which the following
system has a solution:

G (x)=x
0 (*)
é;G,,(x)=1

Proof. See Dekking and Meester,'”’ Lemma 34. |
Lemma 1.10. Let
Prv.y =inf{p: P[A(n4)=1]> 0}

Then p,y v <0.7307.
Proof. Take
3
¢(1)={(uk,): 1<k, 1<3,and Z u,>0,1 <l<3}
k=1

Then we have G,(x)=[1—(1— px)*]>.
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Using (*) of Lemma 1.9, it follows that

x=0.791701
p=pDP)=0.730661 |

2. IMPROVING THE ESTIMATION OF THE
UPPER BOUND OF p,, ,,

We call a 0-1-valued word u=(u;), 1<i<N, 1<j<M, a fully
projected matrix if 37, u,;>0 for all j. In Lemma 1.10, &(1) corresponds
the set of 3 x3 fully projected matrices. The defect of this method is that
@™(1) (m>1) is much smaller than the set of 3" x 3™ fully projected
matrices. In this section, we will improve the estimation of the upper bound
of prv.v by constructing the iterations of 3" x 3™ fully projected matrices.

Definition 2.1. Form=>=0,k>1,

T :={we {0, 117 |w| :=z>o}

YIm,k = T%Y_,k

?,(1):=¥,,
From the definitions, ¥,,, denotes the set of 3" x 3"k fully projected
matrices, and &,(1) is the same as the @ in Lemma 1.10. Let @,(0)=

{0, 1}¥"\@,,(1). Iteration is the same as that in Section 1.4. We have,
according to Lemma 1.7,

@ (0)={0,1}*"\@(1), Vm,n>1
Proposition 2.2. Forall mr>1, let
ny"(p)=PLa;"(1)e Pp(1)]
Then
3 3q

nf?i’l(p>=[ )y Cé‘p“(l—p)-*""[ 3, C3p(1—p)=t

=1 =1

hd iy -2
by — nt— Bip 2 —im—
x[[ Z Cg';m-lzpm '(I—P) o —2 — dmr— 1

im—1=1

Bim—t ) _ 373 37373
x[ > Cs";"._.(pnt,""(p»%(l—pnf,""(p))3'"'—'-'"'] ] ] ] ]

im=1

where ij=1.

822/80/5-6-31



1410 Wu and Liu

Proof. For m=1, it follows from Proposition 1.8.
For m > 1, it is not difficult to see that

3h
(m)(p [ Z C:. :| 1 ul: Z C'-h, piz(] __p)3i|-i2

=1 =1

i -2
X[...{ Z C"{’:,,,l-,pim—l(l_‘p)3im—2—im—l

im-1=1

3im -1 . - ) 393 371373
L% e prers] T T
iy =1
(m)

On the other hand,
) (p)= Z P(OZ'—'(1)=D)P(U}'"'(G,,(v))e‘ﬁﬁ,“(l))

re Py~ (1)

To calculate P(c)"(c,(v))€ @7 '(1)), we introduce some notations: for
words v, we tD,\(l) k>1 wl=3%;w;, b<w means v;,<w, for all i
e ®, ., (1) is obtained by replacing all 0’s in v by (000000000), and all 1’s
by (111111111).

Note that o,(v)<; for a fixed word we®, (1), if w £ 7, then

oy (0 ,(v)) ¢ D) (w) for all n. But o,"(o,(v)) can be written as

mn(a_ (U)) mn(ul) .. nm Ll ), N=32m

and u,,..., uy are independent. Using the same method as in the proof of
Proposition 1.8, we have

Poy(a, () eyt ()= T (prim(p)™ (1~ prim(p)* V-

we Pull)
Wi
In the similar way, we have
n(lm)(P) = Z P(o.;r—— l( 1 ) — D) Z plwl( 1 — p)9 || — farl
cedy_ () wedy(l)

wh

Comparing the representation formulas of z{"(p) and z{",(p), we accom-
plish the proof.

It follows from Proposition 2.2 that for fixed m, if nt or pl, then
7™ p)|. Hence the limit lim,,_, . #'™)(p) exists. The problem is whether or
not this limit is positive. Let

P =1nf{ p: 70(p) = lim ={"(p)>0}

Then we have the following result.
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Lemma 2.3. Forallm=1, pyyy<p,.
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Proof. Let A be a Mandelbrot percolation process with A=) 4,,.

Then
pv.v=inf{p: P[A(nd)=1] >0}
and
Ard)=1<Mnd,)=1, Vnzleo(l)ed, (1), Yn=1
Hence

PlAmd)=1]= lim =}(p)

Forall m>=1, if p> p,,, then

0< lim z%)(p)= lim PLo7"(1)e ®"(1)]

m
n— o n— o«

< lim P[O’;’"(I)G(P"W(l)] = lim n(lmn)(p)

[ =3 n—

=P[Arnd)=1]

Hence p>prvyv. 1

Although we can define an iterate function G,,(x) to find p,, as in
Lemma 1.9, we estimate p,, by testing different values because of the
lengthy expression of (3/0x) G, ,(x): for fixed po, if n"(py)>0, then
P < Pos if ™ (po) =0, then p,, > p,. Now have the estimations of p,, for

m<7 as in Table L.

Lemma 2.4. p,, y<0.6317.

Table |

m P =4 p)
1 0.7307 0.797379
2 0.7056 0.716061
3 0.6869 0.626459
4 0.6712 0.530710
5 0.6569 0.432689
6 0.6437 0.348253
7 0.6317 0.270622
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3. IMPROVING THE ESTIMATION OF THE
LOWER BOUND OF p,, ,,

In this section, we will estimate the lower bound of py v, by using the
methods of ordinary branching processes. Because the construction of the
process is somewhat complex, let us start from a simple estimation.
Lemma 3.1 was proved in Chayes e7 al.,'”’ Section (b); we prove it again in
order to introduce some useful notations.

In the following, a level-n square I}, is said to be open if oy(1)(k, /) =1,
otherwise it is closed.

Lemma 3.1. py > 1/\/3.

Proof. Consider the segment S={1/3} x [0, 1] in Fig. 1.

We say a level-n segment (common side which is in S of two level-n
squares) passable if the two consecutive level-n squares are both open.

Let Z, be the number of passable level-n segments in S. Then

EZ] = 3p2

Hence for psl/\/i, the branching process {Z,},., dies out with
probablity 1. |1

Lemma 3.2. p,;>0.5917.

Proof. Continue to use the notations in Lemma 3.1. Let S, denote
the common side of 7|, and I},. If I}, and I}, are both open, we construct
a branching process as follows.

In | I
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Fig. 2

In Fig. 2, we say a level-n segment (n>2) in S, passable if there is a
connected component in the two consecutive level-(n — 1) squares I} ~' and
I}~ generated by level-n open squares that crosses it and connects into left
and right shadows. We can see in the figure that a level-n segment’s
passability is the same as in Lemma 3.1 when it is not in the middie of a
level-(n — 1) segment.

Let Z, denote the number of level-(n+ 1) passable segments in S;.
Then

EZ, =2p*+[p(1—(1—p)*)+ p(1 —p)* p(1—(1—p)*)]*

If p <0.591721, then EZ, < 1. And for the common side S, of I'}, and /|,
Sy of I}, and 7|, we construct branching processes by the same method.
Then the three processes are iid. Hence they will all die out when
p<0.5917, ie., the segment S cannot be crossed with probability 1. |

Lemma 3.3. py v > 0.6346.

Proof. We divide S into three branching processes as in Lemma 3.2.
For S,, see Fig. 3. We say a level-(2n + 1) segment in S, is passable if there
is a connected component in the two consecutive level-(2n—1) squares
I3~ and I?"~' generated by level-(2n+ 1) open squares that crosses it
and connects into left and right shadows. Let Z, denote the number of
level-(2n + 1) passable segments in S,. A computer calculation shows that
if

p=0.6346
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then
EZ,=0.999658

Hence py v, >0.6346. |
Proposition 3.4. The phase V in Mandelbrot percolation exists.

Proof. From Lemmas 2.4 and 3.3 we have

Pvv<pvwvi |
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